
Real-Time Control System Software for

Intelligent System Development:

Experiments and an Educational Program�

Veysel Gazi, Mathew Moore, Kevin M. Passino

Department of Electrical Engineering

The Ohio State University

2015 Neil Avenue

Columbus, Ohio 43210

Abstract
The National Institute of Standards and Technology

(NIST) has been developing the \Real-Time Control Sys-
tems (RCS)" software for more than two decades and us-
ing it for the design and implementation of complex in-
telligent control systems. Present applications of RCS in-
clude mining, manufacturing, robotics, and autonomous
vehicles. In this paper we summarize the e�orts at Ohio
State University to develop an educational program for the
NIST RCS that includes classroom instruction, a strong
laboratory component (complete with small-scale RCS im-
plementations), and a software handbook.

Keywords: Software, real-time control, intelligent con-
trol, education.

1. Introduction
With the evolution of control systems and with de-

velopment of the theories of intelligence, intelligent au-
tonomous control, and hierarchical functional architec-
tures [1, 2], a need for more complicated controllers per-
forming many di�erent tasks in real time has arisen. Sys-
tems operating with such controllers have been called
Real-Time Control Systems (RCS). The RCS library, de-
veloped by the National Institute of Standards and Tech-
nology (NIST), is generic software developed for the design
and implementation of RCS applications. (In this paper,
RCS will refer to the RCS software library.)

We begin this paper with a brief description of the
need for such a library. Then we show how the RCS soft-
ware can be used to implement complex and distributed
control systems. We provide an overview of a software
manual that is being written for RCS. Next, we describe
two experiments that we have developed at OSU to use for
teaching RCS applications. These experiments currently

�This work was supported by the Intelligent Systems Division
of the National Institute of Standards and Technology (NIST)
and the Center for Intelligent Transportation Systems at OSU.
Please address all correspondence to K. Passino ((614)292-5716,
k.passino@osu.edu).

operate under RCS and are used in class room instruc-
tion. Moreover, we describe an RCS design problem and
its solution for an automated highway system; this prob-
lem was used as a �nal project in the class. We provide
a syllabus of a course that is taught at OSU on RCS and
close the paper with a few brief remarks.

2. RCS Software for Complex Control

Systems Development
Several practical issues surround the development of

complex real-time control applications. These range from
the development of communications between the operator
and the plant to more complicated issues of sharing infor-
mation between multiple, separately operated processes
that are interdependent. Furthermore, the number of ac-
tuators and sensory processing modules of large complex
applications makes it di�cult to develop a practical con-
trol system. The RCS Library is a generalized controller
software and development tool that helps to alleviate the
di�culties in setting up both simple and complex control
routines. It provides a general architecture for control sys-
tems development and the ability to produce hierarchical
controllers and a communications base to link independent
control systems together.

RCS contains an inherent structure that allows for
the decomposition of control systems into several layers,
each of which may contain its own sensory processing and
actuation components. These layers need not be limited
to one computer system. RCS provides a communication
management system (CMS) that allows di�erent routines
to \talk" to each other. This allows for the modeling and
control of an arbitrary number of actuators by linking sev-
eral applications across multiple backplanes. Since RCS
provides a generalized structure for control systems devel-
opment, it can be applied to essentially any control appli-
cation (e.g., the reference model architecture described by
Albus in [1, 2] and the intelligent autonomous controller
architecture described in [2]).

Consider the case of a process control experiment in
which chemicals are combined and mixed in a set pat-

tern. In the simplest case, we control the mixing of two
chemicals in which both level and temperature values are
crucial. The easiest way to implement this structure is
to develop two controllers that are implemented serially
(that is, one at a time) in one program. However, this
quickly becomes a vast waste of resources as the complex-
ity of the plant that is controlled grows. Say we were to
add to the process the mixing of several chemicals, each of
which must be heated (or refrigerated) to its own speci�c
temperature, and must be mixed in a particular order. In
this case, we must control the level in the storage tank of
each chemical, including several mixing tanks and the level
inside them, as well as numerous temperature controllers.
Furthermore, we control the level via actuating a number
of pumps. As one can see, the number of actuators and
sensors can grow quite large in even a fairly simple process
control experiment such as this. It does not make sense
to create one large program to run all control for the en-
tire system in a centralized fashion; time constraints and
required sampling rates may not allow this, or physical
constraints may dictate the need for distributed control.
If, however, the control system is distributed, the running
of separate controllers on several computer systems often
results in the need for communication between di�erent
controllers and higher level coordination of their activi-
ties.

With RCS, hierarchical levels of control can be imple-
mented, and this allows the user to spread the controllers
across several computer systems, increasing processing
power while allowing communication between controllers.
Processes can act independently, allowing the user the
freedom of choosing separate sampling rates, while at the
same time be linked together. Also, RCS allows each layer
or process to pass certain information to the other pro-
cesses acting within the control system, and also allows
the user to determine which and how much data is passed
between control modules. In most cases, controllers need
not share all information, only that which is crucial to the
operation of the other control modules. As an example, in
the process control problem discussed above it is best to
spread out the control over several subsystems (and even
several computers) and RCS can conveniently provide a
method to do this.

The development of a software base to synchronize
and link multiple control applications in real-time is ex-
pensive and time-consuming. This is compounded by the
fact that each control application usually must be devel-
oped separately, and previously developed controllers of-
ten cannot be reused in di�erent applications. The RCS
software base reduces the e�ort in the development of real-
time control systems by providing a portable and reusable
software base. The RCS system does not specify imple-
mentation details. This means that the RCS structure
can be applied to many di�erent types of applications,
from simple single-input single-output control systems to

a hierarchical structure that controls many complex pro-
cesses. It can even provide a basis for development of
autonomous and intelligent control systems. One can see
that RCS o�ers a wide variety of bene�ts. By providing
only the structure of real-time control systems, a standard
interface is available for many di�erent platforms. The
user establishes the implementation details. RCS does
not limit the possible control applications since it only
provides the means for communicating between comput-
ers, sensory processing, task decomposition, and develop-
ing an operator interface. The user determines the layout
and use of these systems such that productivity is maxi-
mized. Since RCS is easily ported to di�erent platforms,
algorithms written for one application can be reused and
incorporated by di�erent controllers.

The keys to the portability and standardized archi-
tecture of RCS is the use of CMS and the Neutral Man-
ufacturing Language (NML). CMS is itself a software li-
brary that contains several system dependent operating
system (OS) calls crucial to establishing communications
between separate computers along a network. Several OS
are already supported by the RCS software base, includ-
ing MS-Windows, UNIX, Linux, DOS, and others. RCS
provides the ability to pass information between comput-
ers running di�erent OS by encoding the information in
the neutral manufacturing language format before pass-
ing it to another computer. NML provides the software
base classes that allow this to happen. RCS controllers
communicate with each other via shared memory bu�ers
of user-speci�ed size. That is, sharing of information is
obtained by having one process write to the bu�er and
another process read the information from it. RCS pro-
vides the
exibility to establish these bu�ers anywhere
along the network. An NML-server runs in conjunction
with the bu�er that decodes the NML-formatted informa-
tion into the native format (e.g., a format that can be
used by the other processes). The NML base classes set
up what information in a process is written to the bu�er
on a write cycle, and also provide the means of determin-
ing the type of message (e.g., what process the data came
from) obtained from a bu�er read. The RCS user will pro-
gram mainly using the NML classes and will not deal with
the CMS, though it is important to remember that CMS
provides the building blocks for setting up the RCS com-
munications and NML is simply a higher level interface to
CMS.

The software manual described in the next section ex-
plains how to use the RCS software library to develop both
simple control applications and design more complex hier-
archical control structures. Actually, the development of a
hierarchical system stems directly from the development
of several simple control processes linked together using
NML bu�ers. One of the greatest strengths of the RCS
control system development approach is that it provides
a standardized structure that is simple and portable to

di�erent applications. Because of this, the uses of RCS
are wide spread.

3. Overview of the Software Handbook
The software handbook is a document that serves as a

user's manual for the RCS application programmer. It de-
scribes the main components of the RCS library and pro-
vides real physical examples of its implementation. For
users to get the full understanding of the RCS Library,
some knowledge of the C++ programming language as
well as a basic understanding of network communications
is desirable. For C programmers who have not had much
C++ experience, there is an appendix which contains a
basic introduction of the C++ language. Furthermore,
there is an appendix which provides an introduction to
some operating system concepts and network communica-
tion protocols. Next, we brie
y overview the main con-
tents of this manual.

The second chapter discusses two alternative hierar-
chical intelligent system structures which can be imple-
mented using RCS. These structures are discussed in [1, 2].
The �rst architecture is called Reference Model Architec-
ture (RMA) and was developed by NIST and the sec-
ond architecture is included simply to emphasize that the
NIST RCS software has very broad applicability, even to
hierarchical intelligent autonomous control systems. The
RCS software could be used equally e�ectively for other
control architectures.

The third chapter provides a basic introduction to the
terminology used in the RCS library. The main compo-
nents of the RCS library such as CMS and NML are brie
y
described. Moreover, a process control experiment, to be
used throughout the manual, is stated as a design prob-
lem for an NML application. Finally, some guidelines for
design of an NML application are presented.

To build an NML application one needs to know basic
NML message classes, NML read and write functions and
how to run and stop NML servers. These are detailed in
the fourth chapter together with some examples. More-
over, this chapter describes some error handling and some
command line utilities for NML.

Chapter �ve provides information on basic process and
bu�er types that can be de�ned in an NML con�guration
�le. It describes how a con�guration �le is written. The
user should be familiar with basic operating system con-
cepts so that he or she can choose between the available
protocols and de�ne the required type of mutual exclusion
for concurrent processes.

Chapter six presents some lower level utilities of the
RCS library. These are generic classes or functions which
are used throughout the development of the RCS li-
brary; however, they can be useful for the application
programmer on their own. Such utilities include a timer,
semaphore, linked list, and some print and windows func-
tions.

In RCS applications we often need to check the con-
troller status and supervise it remotely. The RCS diagnos-
tics tools can provide this function. The seventh chapter
describes a \diagnostic tools" written by the NIST team
as a Java applet and can be viewed using any Java com-
patible Internet browser.

In the �nal chapter we provide three illustrative exam-
ples for programming using RCS library. The �rst two ex-
amples are physical laboratory experiments; the third is a
computer simulation process. The laboratory experiments
include the level and temperature control of a liquid in
surge tank, introduced as a design problem in the second
chapter, and the balancing of an inverted pendulum. The
computer simulation is an RCS-centered automated high-
way system (AHS) platoon consisting of (at least) three
vehicles. The chapter describes the de�nition of message
classes, writing con�guration and architecture �les, coding
format functions, creating and running NML servers and
programming module components of these experiments.

If you would like to get more information on RCS see
[3].

4. The RCS Laboratory Experiments
At this time we have two experiments operating under

RCS and have included the full details of the implemen-
tation in the RCS software handbook. Moreover, there is
a RCS design problem for an automated highway system
application that we will simulate using computers.

4.1. Rotational Inverted Pendulum Ex-

periment

V

AM9513
Timer #2

D/A
Channel 0

DAS-20 Board

1

2

3

4

5

AM 9513
Counters

Lab Tender Board

Circuit

Servoamplifier

θ1

θ0

- Borland C ver. 3.0

486DX/50

-

+

wires from an optical encoderSignal Conditioning

w
ir

es
 f

ro
m

 a
n

op
tic

al
 e

nc
od

er

DC Motor

Rotating Base

Pendulum

INTERFACES CONTROLLED OBJECTCONTROLLER

+-

Gateway 2000 P.C.:

- Intel 80486DX @ 50 MHz

- 4 MB RAM

- 128 KB cache memory

- 200 MB hard disk

Software:

- Matlab ver. 3.5K

- MetraByte’s PCF-20

Figure 1: Experimental set up of the pendulum.

The swing-up and balancing of an inverted pendulum
is a typical non-linear academic problem that has been
used for testing a multitude of controllers. It is an ideal
experiment for an application example for the use of RCS
since the control problem is well understood and hence we
can just focus on RCS component. The plant is shown in
Figure 1 and consists of a pendulum, a rotational base,
sensors and an actuator. The actuator is simply a motor
that drives the rotational base. The pendulum is con-
nected to the optical encoder tied to the base in such a

way to allow the pendulum to swing freely. By rotating
the base, the pendulum swings in response. The controller
must rotate the base in such a way that the pendulum
swings up and balances vertically at its unstable equilib-
rium point.

Buffer

Computer Connected to the Pendulum

Buffer

Status Command

NML

Server

NML

Server

Pendulum

Module

User Interface
Module

User Interface Computer

Figure 2: Shared bu�ers and NML servers for the pendu-
lum.

This system is simpler than the process control exper-
iment treated below as far as the use of RCS and that
is why we treat it �rst. While we use only one running
module this application is still important since it serves
to introduce basic RCS ideas and it shows that RCS can
be used for plants with relatively small sampling inter-
vals. Furthermore, we show the versatility of several of
the lower library functions and how they are used.

This experiment can be performed both under DOS
and Linux environments on the same PC, and a Windows
NT workstation is used for diagnostics purposes. We need
two NML shared memory bu�ers for reading the status of
the control module and for sending commands to it via
the diagnostics tool. The NML shared memory bu�ers
are located on the NT station while running under DOS
and can be located both on NT station and Linux sta-
tion while running under Linux OS. The simple reason
for this is that one needs to run NML servers, which read
from and write to the shared memory bu�er on behalf
of the remote processes, for every bu�ers which will be
accessed remotely. Since DOS does not allow multitask-
ing one cannot run the servers on the DOS PC because

there is already a controller module running on it. Fig-
ure 2 shows a possible implementation of the bu�ers and
modules while running the experiment under Linux. Note
that, although the computer we use are in the same lab,
the host called \User Interface Computer" can be located
on any host on the internet. We will not discuss in detail
the control techniques used, as emphasis is on using RCS
for the experiment. All data acquisition is obtained using
a Keithley DAS20 Data Acquisition Card. The functions
accessing the DAS20 are contained within the DOS exe-
cutable �le.

4.2. Process Control Experiment

Computer

Computer

To

Storage Reaction

ChamberTank

Hot

Tank

Cold

Tank

Power

And

Switching

Circuitry

AC Pump

DC Pumps

Interface

Box

Power

Switch

Figure 3: Setup of the process control experiment.

The experimental setup of the process control exper-
iment is shown in Figure 3. Similar to the pendulum ex-
periment this one can also be run both under DOS and
Linux OS. On another PC running under Windows NT
we run the Diagnostics tools so that we can view the sta-
tus of the process and send commands to the modules in
controller. In other words the DOS (Linux) PC is the
computer on which the control modules run and the Win-
dows NT PC is the user interface computer. As in the
pendulum we locate the shared memory bu�ers on the
NT station for DOS and on the Linux station for Linux
application. They can be located on the NT station also
but we recommend to put them on the computer the con-
trollers are running on since this makes writing to them
easier and therefore increases the speed of the process. In
this application there is a need for temperature and level
control so there will be a module for each and one super-
vising module. Figure 4 illustrates how one can locate the
status and command bu�ers for this experiment. Note
that the supervisor module can access the bu�ers of the
level and temperature modules. This allows it to check
the status of the modules and to send commands to them.
As in the pendulum experiment, the user can access all
the bu�ers from a remote host. Low level controls are
simple PID loops. The RCS code illustrates how multiple

modules can be de�ned to interact on di�erent machines.

Supervisor

Computer Connected to the Process Control Experiment

command
buffer

command
supervisor supervisor

status
buffer

level
command

buffer

level
status
buffer

User Interface Computer

Heater
Module

Module

Level
Module

NML
Server #3

NML NML NML
Server #6Server #5Server #4Server #2

NMLNML
Server #1

heater
status
buffer

heater

buffer

Interface Module

Figure 4: Shared bu�ers and NML servers for the tanks.

4.3. The Automated Highway Example
The AHS problem is the most involved RCS design

project of the laboratory course, and because of this, it
serves as the students' �nal project. This ensures the stu-
dents have had plenty of exposure to RCS coding from the
previous experiments before attempting to solve the AHS
problem.

The AHS setup demands that the students design con-
trollers for longitudinal and lateral control for a vehicle
with simple dynamics. Furthermore, the student must
develop the higher level decision-making process based on
state table analysis of the situation a platoon of three vehi-
cles may be introduced to (e.g., when a car should change
lanes, speed up, etc.). The basic requirements insist that
the students simulate each of the three vehicles on three
separate computers (simulating the vehicle independence
that occurs in a real AHS). The overall AHS system will
be operating on a two lane (one-way) road with speci�ed
lane width. An additional requirement makes it possi-
ble for each vehicle to set its own desired speed. Other
than using RCS modules for the control algorithms and
simulating vehicle dynamics and RCS messages for any
inter-vehicular communication, the actual details of the
design are left to the students. The student determines
what information is communicated and how.

A simple solution to this problem is brie
y presented
to the students to act as a starting point. In the solution,
two RCS modules are created|one to act as the super-

visor, and the other is a basic template for the vehicle.
Dynamic simulation and the low-level controller code is
included in the vehicle module. The higher level decision-
making is done by the supervisor, which acts as a parent
to each of the vehicles. The supervisor reads the current
speeds and positions of each of the subordinate vehicles via
RCS messages, determines the current situation to handle
and sends commands back to the vehicles with the goal of
providing e�cient and safe highway travel. Possible com-
mands could be for the vehicle to slow down/speed up or
to switch lanes. The advantages to this design include the
modularity of the code, as each vehicle code will be the
same except for a few parameter changes, and the hierar-
chical design which is promoted by the RCS architecture.

5. The RCS Course
In this section we provide an overview of the syllabus

that is used for a course on the NIST RCS in the Depart-
ment of Electrical Engineering at The Ohio State Univer-
sity in the Spring Quarter, 1998.

The course (EE 758) is one of two laboratory courses
we o�er at the graduate level in the controls area (the
other, EE 757, is on digital control and focuses on low
level implementation details and controller development
for a variety of conventional control strategies). At other
times EE 758 has been run as a lab course in conventional
control and more recently it has been associated with our
course in intelligent control (where fuzzy/neural/genetic
adaptive estimation and control are taught). EE 757 is
not a prerequisite for EE 758, but students who have al-
ready had EE 757 tend to have a deeper understanding
of the low level operation of the controllers. Prerequi-
sites for the current EE 758 include a knowledge of how
to program in C (or C++) and an understanding of a few
control system design methodologies (e.g., PID and state
feedback control design), although a student who has had
many graduate level courses in control may have a slight
advantage. The course has lecture sessions as well as lab
sessions. In the lecture sessions the theory and use of
RCS is detailed while in the lab sessions students develop
controllers and implement them using RCS.

The stated objectives of the laboratory are: To de-
velop and implement distributed real-time control systems
using the NIST RCS and to develop control modules using
a variety of conventional and intelligent control methods.
OSU is on the quarter system which has ten weeks. The
class and laboratory topics for these ten weeks are:

1. Class: RCS Introduction (CMS/NML Overview);
Lab: Laboratory software (C, C++ programming,
OS, network)

2. Class: Programming in the neutral manufacturing
language (NML); Lab: Laboratory hardware (data
acquisition card)

3. Class: Writing NML con�guration �les, RCS diag-
nostics; Lab: Pendulum experiment (controller de-
velopment)

4. Class: Other classes and functions in the RCS library;
Lab: Pendulum experiment (RCS implementation)

5. Class: RCS applications (overview and simulation);
Lab: Tank experiment (level, temperature controller
development)

6. Class: RCS development project overview; Lab:
Tank experiment (RCS implementation)

7. Class: Distributed control problem (background,
real-world details); Lab: Project: low level control
design (distributed control experiment)

8. Class: RCS Design review; Lab: RCS de-
sign/implementation

9. Class: RCS design review; Lab: RCS implementation
and testing

10. Class: RCS design report; Lab: RCS demonstration

6. Concluding Remarks
In this paper we have overviewed some experiments

we developed that use the NIST RCS software package
and have described an educational program we imple-
mented at OSU for teaching RCS. This involves class
room instruction and laboratory experimentation. At the
present time we are revising the educational materials
based on our experience in teaching the material and the
materials will be made available to the public by Sept.
1998.

Acknowledgements: The authors would like to thank
Fred Proctor, Will Shackleford, and James Albus of NIST
for their assistance in every aspect of this project. It
must emphasized that the RCS software was developed
over many years at NIST by these and other members of
NIST; here, we simply reported on the development of an
educational program for RCS at OSU.

References
[1] J. S. Albus, Outline for a Theory of Intelligence,

IEEE Trans. on Systems, Man, and Cybernetics, Vol.
21, No. 3 May/June 1991

[2] P. J. Antsaklis and K. M. Passino (eds.), An Introduc-

tion to Intelligent and Autonomous Control, Kluwer
Academic Press, MA 1993

[3] Will Shackleford, Real-Time Control Systems Li-

brary: Software and Documentation, Internet Loca-
tion, http://isd.cme.nist.gov/proj/rcs lib/

